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Summary 

A receiver decimation study has been performed for assessing the potential of using very sparse receiver grids 

in conjunction with high-order multiple imaging techniques for 4D reservoir monitoring. Reducing the density of 

receivers in a PRM (permanent reservoir monitoring) system will reduce the capital expenditure. For OBN (ocean 

bottom node) acquisition, cost saving can be achieve from more effective node deployment. The imaging 

process makes use of the multiple sea-surface reflections to significantly increase the fold, hence compensating 

for the reduced number of sensors. We will show that with the above imaging technology it is possible to use 

sparser seabed recording geometry without compromising the 3D or 4D image quality. Using the Jubarte PRM 

dataset acquired by Petrobras, the decimation test consists of taking out receiver included into circular patches 

within a diameter of 600 m. The number of sensors is then reduced by a factor two. The results demonstrate 

that it is possible to break some established limit in term of seabed sensor sparseness without compromising 

the resolution of 3D/4D imaging. 



Introduction 

Seismic seabed acquisition, such as OBC/OBN, has some benefit for imaging offshore reservoirs 
when a wide azimuthal illumination is needed or when surface infrastructure obstruction occurs. Such 
acquisition can offer wide azimuth and long offset illumination with a limited operational constraint 
for the acoustic source part because the shooting vessel is physically disconnected from the recording 
system. However, the receiver deployment on the seafloor may require more complex operations, 
especially in a deep water context.  In addition, seabed infrastructure installations (flow line, well 
head, pump...) may challenge the receiver layout geometry and add extra cost. The economic benefit 
of reducing the number of receivers is obvious but a critical number of sensors is necessary in order to 
assure a minimum of fold.  The receiver sparsity limit for seabed acquisition has been largely 
commented in the literature. Most of the OBC case studies, using the standard up-going wavefield 
imaging, have a maximum of 300 m of receiver line separation and 100 m sensor distance along the 
cable.  Beyond these limits, the image suffers from lack of continuity and resolution. In a deep water 
environment, the use of the down-going wavefield, with mirror imaging, allows the recording 
disposition to be stretched. For examples, an OBC grid of 100 x 400 m is used for an optimum 
compromise on the Aganota-BC-10 field with water depths of 1600-1700 m (Galagara & al., 2015).  
In a another deep water OBN example, a receiver decimation using a grid of 450 x 450 m receivers 
has been recommended for preserving the imaging resolution (Olofsson & al., 2012). In any cases, 
500 m receiver distance seems to be an established maximum for preserving a decent signal-to-noise 
in the final seismic image. For our study, we used the deep water Jubarte PRM pilot dataset acquired 
by Petrobras with an initial receiver grid of 50 m x 300m. Permanent reservoir monitoring (PRM) 
installations can be considered as the ultimate solution for detecting small seismic signal variation 
related to the reservoir production. We simulate the impact of very sparse geometry by creating 
receiver gaps, larger than the 500 m limit, within the initial layout. 

PRM Jubarte: Deep water context 

In 2012, Petrobras installed the first deep-water optical PRM system provided by PGS in the Campos 
basin (Figure 1a). This pilot project covers ~10 km2 with the primary objective being to validate the 
fiber optic sensing technology in detecting subtle impedance changes in the Jubarte reservoir. The 
layout of the 35 km optical cable was designed for the up-going seismic wavefield imaging. The main 
challenge was to optimize the cable layout and the density of multi-component receivers for ensuring 
an effective 4D seismic detectability whilst avoiding any crossings of the existing subsea 
infrastructure, (Thedy et al., 2013). 712 four component optical sensors were deployed in water 
depths varying from 1250 to 1350 m. The receivers are positioned every 50 m along the cable and the 
layout is made of 11 receiver-lines separated by ~300 m (Figure 1b). The source grid covers an area 
of 11 km x 11 km with 25 x 25 m shot intervals. The first 4D signals have been observed after one 
year of reservoir production using the active seismic surveys completed respectively in early 2013 and 
early 2014. The resulting monitoring image has been limited to the area of ~10 km2, but was 
sufficient for validating the deep-water pilot installation. The quality of the 4D seismic signal 
demonstrates the high detectability expected from a permanent optical installation. 

a) b) 
Figure 1: a) Jubarte field location, north campos bassin.  b) Layout of the 712 seabed optical  sensors (in red) 



High-order multiples imaging for seabed acquisition 

The 4D Jubarte datasets were used for validating an original 3D/4D imaging solution that uses all the 
recorded seismic reflections, primaries and sea-surface multiples (Lecerf & al., 2015). To summarize 
the imaging concept, the source wavefield composed from all recorded data is forward extrapolated, 
the receiver wavefield composed from the same recorded data is backward extrapolated and an image 
is constructed by applying a deconvolution imaging condition of the two wavefields (Lu et al., 2015). 
The 4D image is then computed with the image difference of the base and monitors. 
For OBC/OBN acquisition using conventional imaging technique, the illumination map can be 
estimated directly from the shot and receiver location (figure 2a, P-UP:blue line). Nevertheless 
imaging with multiples uses every order of sea-surface reflections available in the data. The 
illumination, retrieved from a single source-receiver pair, contains numerous hit points at the target 
level. In fact, the methodology transforms every shot pair into a virtual sea-surface source-receiver 
system (figure 2a). The illuminated area is essentially defined by the surface distribution of the 
seismic sources and the maximum order of multiples recorded.  
Figures 2b and 2c show the comparison between an image provided by conventional up-going 
primary reflections and an image computed from all orders of multiple available in the records. It can 
be noticed that the up-going image is limited by the receiver array of 3 km while the image using all 
orders of multiples is defined by the source distribution covering 10 km.  

a)                                                    b)                                                     c) 
Figure 2: a) Target illumination schemes for a single source-receiver pair. b) 3D image section computed from 
up-going primary reflections only (P-UP).  c)  3D image section computed from all order of multiples  

Receiver Decimation Test 

The illumination surface enlargement is not the only benefit of using the high-order multiples. 
Because of the multiplicity of the sea-surface reflections, the density of “hit point” at the target is 
significantly increased. Due to the illumination gain, proportional of the number of orders of multiple 
present in the record length, we should be able to increase the sparsity of the receivers without 
impacting too much the image resolution. The shot distribution and the quality of the multiple records 
become more crucial for the illumination than the layout geometry of the seabed sensors. 
One of the decimation scenarios was to mimic a very sparse acquisition with “receiver holes” of 600 
m diameter. Creating such holes in the initial receiver layout halves the effective number of receivers. 
Figure 3c describes the sensor geometries selected for the decimation tests. Two subsets of 350 
receivers were created with 34 sections of ~10 ‘continuous receivers’ (with the initial 50 m 
separation). Sections, for each subset, are then separated by 600 m in both directions. The same shots 
were processed for the two decimation sets. Figure 3a and 3b show respectively the 3D seismic image 
section and the 4D image difference created with the full set of receivers (Set1+Set2: ~700 rec) used 
as the reference for the decimation test.  

3km 10km 



a)                                       b)                                                    c) 
Figure 3: a) Reference 3D image section using full set of 700 receivers. b) Reference 4D image difference 
section using full set of 700 receivers. c) Scheme of the receiver decimation. Two subsets (blue and red) of 350 
receivers are composed from 34 sections of ~10 receivers (with 50m separation). For each subset, the gap 
between sections corresponds to a circle of 600m diameter.  

The 4D signal, visible in the central part (figure 3b), has been extracted by doing the difference 
between two “high order multiple” images from two surveys acquired a year apart. It’s a “raw” 4D 
difference as no specific 4D cross-equalization, de-noise or post-processing has been applied. Some 
4D noise appearing in the background can be observed. This noise seems to come from the water 
velocity variation affecting the source repeatability between the surveys. This noise can be handled 
pre or post migration using cross-equalization filters. The 4D difference interpretation is not the 
objective of this paper. The “raw” 4D seismic is used as reference and we will focus on the 4D full 
stack image resolution associated to the receiver’s decimation. 
Figures 4 a) and b) show respectively the 4D differences computed using the subset1 and the subset2 
geometries. No difference in term of 4D resolution can be observed between these 4D images using 
the decimated sets and the one using the full set (figure 3b). The 4D signal is remarkably preserved 
despite the receiver gap in the layout. Interestingly, the 4D noise is repeated as well for the three 
cases, it can be attributed to the non-repeatability on the source side, as the three 4D images sharing 
the same shots.  

a)                                            b)                                                    c) 
Figure 4 a) 4D difference using subset 1(350 rec.), b) 4D difference using subset 2 (350 rec.), c) Difference of 
the two 4D differences (4D subset1- 4D subset2)  

For both decimation cases, the base and monitor uses the same set of 350 receivers, which assures an 
optimum repeatability in term of recording system. Imaging using several orders of multiple makes 
use of the intrinsic redundancy of reflections information and the 600 meter patches without sensors 
are largely compensated. Furthermore, the similarity and consistency between the 4D images 
provided by the two complementary sensor subsets demonstrates the disconnection between seabed 



system geometry and illumination. With the new imaging process, the resulting illumination is 
principally driven by the shot carpet (similar for base and monitor).  
Figure 4 c) shows the difference of the two 4D differences computed from the two decimated sets. 
The presence of only random noise indicates that either the 4D signal or the consistent 4D noise is 
insensitive to the seabed acquisition geometry. It confirms as well the excellent repeatability that can 
be achieved on the receiver-side using permanent optical cable.  

Discussion 

This simple decimation test demonstrates the potential of the “high order multiple imaging” to enable 
very sparse seabed acquisition. However, the concept of acquisition sparsity should be clarified. This 
test shows that large sensor gaps can be handled but a minimum of fold has to be respected for 
assuring a sufficient image resolution. This means that the number of receivers is still essential for 
optimizing the signal-to-noise ratio in the final image stack process, but their location on the seabed is 
inconsequential or less important. This can have a significant economic impact on the OBC or OBN 
deployment as larger area can be covered with stretched layout geometry and a reduced number of 
sensors. Also, seabed infrastructures can be easily avoided without compromising the final image 
illumination.  

Conclusions 

A receiver decimation study has been performed, using the PRM Jubarte dataset acquired by 
Petrobras, for assessing the potential of very sparse seabed acquisitions in conjunction with high-order 
multiple imaging techniques. We have demonstrated that the imaging technique is appropriate for 
seabed datasets in both the 3D and 4D contexts. It makes use of the multiple reflections to increase 
significantly the illumination, therefore enabling sparser seabed recording geometry with receiver 
gaps larger than 500 m. The number of sensors is thereby reduced by a factor two. The results 
demonstrate that it is possible to break some established limits in terms of seabed sensor sparseness 
without compromising the resolution of 3D/4D imaging. For future seabed acquisition, the use of this 
new imaging technique provides more flexibility in the design of the receiver layout in addition to the 
economic benefits. Sensors can be placed in particularly quiet parts on the seabed thereby improving 
the detectability of weak 4D signals without compromising the target illumination. 
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