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Summary 
 
We introduce a method using Fourier neural operators to rapidly generate a high-quality starting model 

for FWI or joint inversion. Instead of directly moving from field shot gathers to velocity, we migrate 

the data to produce angle gathers. Our approach leverages the simplicity of mapping within the model 

space and the reduced variety of data features in migrated angle gathers, making it easier to train a neural 

network. This gather-based migration velocity analysis is valuable for quickly estimating a starting 

velocity, leading to fewer FWI iterations in finalizing the velocity model. We showcase a successful 

inference derived from 3D, full azimuth field data collected offshore Brazil using ocean-bottom nodes. 

A few iterations of low-frequency RTM were sufficient to go from a featurelessly smooth model to one 

which had the 3D structure of the salt mostly defined, and shallow and deep sediments approximately 

corrected. In complex settings (e.g., salt), this could be a valuable tool for rapidly generating a model 

suitable for input to FWI. 
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Introduction 

 

In recent years, there has been an increasing interest in the application of deep learning-based algorithms 

for estimating seismic velocity models. This includes the direct conversion of input shot gathers into 

high-resolution velocity models, as discussed by Araya-Polo et al (2018) and Shibayama et al (2021), 

among others. Alternatively, background models, designed for use in Full Waveform Inversion (FWI), 

can be obtained directly from shot gathers, as indicated by Farris et al (2018), or through a combination 

of data attributes and well information, as explored by Mohamed et al (2023).  

 

Several approaches in this domain leverage convolutional neural network (CNN) architectures, 

incorporating local convolutional operators. Notable alternatives include transformers (Wang et al., 

2023) and Fourier neural operators (FNOs) (Huang et al., 2023). This study specifically focuses on 

Fourier neural operators (FNOs), initially introduced as a machine learning method for solving partial 

differential equations (Li et al., 2021). Unlike CNNs, which utilize local operators, FNOs employ global 

convolutions efficiently computed with Fast Fourier Transforms (FFTs). FNOs are recognized for their 

capability to represent non-linear, non-local operators more effectively than CNNs. Moreover, they 

demonstrate mesh independence, allowing flexibility in performing inferences on grids different from 

the training grid. Previous works by Yang et al. (2021) and Konuk and Shragge (2021) applied FNOs 

to solve the acoustic wave equation, while Huang et al. (2023) used them for velocity estimation from 

input shot gathers. Given their ability to capture non-local effects and mesh independence, FNOs are 

well-suited for Machine Learning-based Migration Velocity Analysis (MVA). This suitability arises 

from the fact that errors in a migration velocity model typically manifest elsewhere in the migrated 

image, rather than directly at the location of the error itself. 

 

One of the common challenges in working with neural networks is ensuring their effective 

generalization from training data to real-world field data. Neural networks often struggle when faced 

with input data features that are not present in their training set. Synthetic training data is employed to 

ensure accurate labels during training. However, field data introduces complexities such as noise, 

irregular acquisition geometry, and unmodeled physics. To enhance the realism of training data, Park 

et al. (2023) and others employ neural style transfer, particularly focusing on noise content. In contrast, 

our approach takes a different path by migrating the data before feeding it into the neural network. 

Migration serves to regularize and filter the data, potentially narrowing the disparity between training 

data and field data. Naturally, we continue to introduce diverse types of noise to the migrated training 

datasets, alongside augmenting the data through filtering and scaling, similarly to the approach 

employed by Klochikhina et al. (2021). Moreover, migration involves mapping the data into identical 

physical coordinates as the velocity model, incorporating additional aspects like angles and extended 

image axes, providing a natural lifting effect. A neural network aiming to derive an earth model directly 

from seismic data must understand the mapping between data space and model space. We anticipate 

that keeping the mapping within the model space, utilizing defocused images and residual moveouts to 

generate velocity updates, presents a more manageable task for the neural network to perform. 

 

We introduce a method using Fourier neural operators to rapidly generate a high-quality starting model 

for FWI or joint inversion. Instead of directly moving from field shot gathers to velocity, we migrate 

the data to produce angle gathers. Our approach leverages the simplicity of mapping within the model 

space and the reduced variety of data features in migrated angle gathers, making it easier to train a 

neural network. This gather-based migration velocity analysis is valuable for quickly estimating a 

starting velocity, leading to fewer FWI iterations in finalizing the velocity model. 

 

First, we provide a brief overview of the adapted FNO architecture and the workflow for creating 

synthetic datasets employed in the training process. Then, we showcase a successful inference derived 

from 3D, full azimuth field data collected offshore Brazil using ocean-bottom nodes. The inherent 

redundancy in the data allows for effective ensembling of the 2D inferences. 
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Method 

 

The basic workflow and architecture are described in Crawley et al (2023). The original architecture 

introduced by Li et al. (2021) is modified by the addition of convolutional layers between integral 

operator blocks, as shown in Figure 1. Lara-Benitez et al. (2023) present the mathematical proof of a 

similar architecture used to solve the Helmholtz equation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To train the network, we first generated 10,000 synthetic surveys with randomly generated background 

velocity models and density models based on Hamilton’s and Gardner’s relations. Some of the models 

were augmented with randomly shaped geobodies to simulate salt. Errors of various types and 

magnitudes were introduced to each model. The synthetic surveys were subsequently migrated using 

the resulting incorrect velocity models, producing gathers. We augmented the gathers by adding noise, 

filtering, and scaling in depth. We then trained an FNO-based network to determine the correct velocity 

based on the initial model and migrated gathers as input. Each input sample comprised a set of migrated 

gathers and a velocity model, while each target sample represented an updated velocity model.  

 

The trained network lends itself to iterative use. When provided with a set of migrated gathers, it 

generates a new velocity model. This updated model is then employed to generate a fresh set of migrated 

gathers, creating a recursive process. Furthermore, applying the trained model to additional synthetic 

data yields a velocity estimate, which may still be inaccurate to varying degrees. Migrating with these 

estimates generates additional training samples, contributing to the refinement of the network. 

 

3D offshore Brazil example 

 

We applied the trained model to an ocean bottom node survey conducted offshore Brazil in the Santos 

Basin area. Leveraging a high-quality legacy velocity model for the region, we generated a starting 

model through extensive smoothing, retaining only the water bottom. Consequently, the resulting 

starting model resembles a v(z) model hanging from the water bottom. Subsequently, three iterations 

of Reverse Time Migration (RTM) and velocity model updates through inference were conducted. 

Figure 2 displays a crossline slice from the starting model (Figure 2a), the inferred result (Figure 2b), 

and the legacy model (Figure 2c), alongside the corresponding portion of the image. The initial model 

exhibits significantly higher velocities in the shallow regions compared to the legacy model (Figure 2c) 

and lacks fine details. After a few iterations, our result (Figure 2b) largely corrects the shallow velocities 

and captures the salt formations. It deviates from the legacy model in the very deep section, beyond the 

last events captured in the image (Figure 2d), where gathers lacked any informative content. 

 

The field data consisted of 3D OBN data, whereas the training data were fixed spread 2D data. 

Consequently, we selected inline and crossline images, along with angle gathers from the appropriate 

azimuth, and input them into the trained network. This yielded two volumes of inferences, exhibiting 

some expected differences, and displaying noise perpendicular to the slicing direction of the inference. 

Employing total variation denoising to combine azimuths during each iteration resulted in a single 

Figure 1 Macro design of adapted FNO architecture. 𝑚 
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updated model. Depth slices through the top of salt are presented in Figure 3. The merger of multiple 

azimuths and iterative denoising successfully reconstruct structures in the velocity that are diagonally 

oriented relative to the imaging grid. While there is room for further improvement, the inferred velocity 

model is very suitable for input into FWI. The compute cost of the exercise was very modest—only one 

low-frequency RTM per iteration. Inference and denoising processing incurred negligible costs. 

However, the implicit assumption in updating a 3D model through 2D slices remains a topic for future 

work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusions 

 

We introduce a novel approach to estimate high-resolution velocity models from migrated gathers using 

Fourier neural operators. In contrast with deep-learning algorithms that estimate velocity directly from 

field data, our method leverages the shared domain between migrated data and velocity models. This 

facilitates generalization from training with synthetic data to field data inferences. Moreover, the 

extended domain (e.g., angle) provides a natural lifting, incorporating additional physical information 

that enhance the robustness of the velocity estimation. We demonstrate the effectiveness of our 

approach on field data acquired in offshore Brazil. A few iterations of low-frequency RTM were 

sufficient to go from a featurelessly smooth model to one which had the 3D structure of the salt mostly 

defined, and shallow and deep sediments approximately corrected. In complex settings (e.g., salt), this 

could be a valuable tool for rapidly generating a model suitable for input to FWI. 

 

Figure 2 Crossline slice showing performance of the neural network on the 3D Brazil example. The 

starting model (a, with the velocity scalebar overlaid) is an aggressively smoothed version of the 

legacy model (c). The result after three iterations (b), is partially though not perfectly corrected in 

the shallow sediments and salt. The deepest part of the section diverges somewhat, but this occurs 

below the bottom-most significant events in the migrated data (d). 
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Figure 3 Depth slice showing performance of the neural network on the 3D Brazil example. The 

starting model (a, with the velocity scalebar overlaid) is nearly v(z) and doesn’t contain any detail. 

The result after three iterations (b) is imperfect but has the structure and approximate values of the 

legacy model (c). The next step is to refine this model with FWI. 



 

 

85th EAGE Annual Conference & Exhibition 

 

Acknowledgements 

 

The authors thank PGS for permission to publish this work. We also thank Petrobras for permission to 

show the Santos Basin data, and Antonio Lara Benitez and Elena Klochikhina for their contributions. 

 

References 

Araya-Polo, M., J. Jennings, A. Adler, and T. Dahlke, 2018, Deep-learning tomography: The Leading 

Edge,37,58–66. 

Crawley, S., G. Huang, R. Djebbi, J. Ramos-Martinez, and N. Chemingui, 2023, High resolution angle 

gather tomography with Fourier neural operators: Third International Meeting for Applied Geoscience 

and Energy, SEG, Expanded Abstracts, 1461-1464. 

Farris, S., M. Araya-Polo, J. Jennings, B. Clapp, and B Biondi, 2018, Tomography: A deep learning vs 

full-waveform inversion comparison: EAGE Workshop on High Performance Computing. 

Huang, G., S. Crawley, R. Djebbi, J. Ramos-Martinez, and N. Chemingui, 2023, Deep learning velocity 

model building using Fourier neural operators: 84th Annual International Conference and Exhibition, 

EAGE, Extended Abstracts. 

Klochikhina, E., S. Crawley, and N. Chemingui, 2021, Seismic image denoising with convolutional 

neural network: First International Meeting for Applied Geoscience and Energy, SEG, Expanded 

Abstracts, 2864-2868. 

Konuk, T., and J. Shragge, 2021, Physics-guided deep learning using Fourier neural operators for 

solving the acoustic VTI wave-equation: 82ndAnnual International Conference and Exhibition, EAGE, 

Extended Abstracts. 

Lara-Benitez, A., T. Furaya, F. Faucher, A. Katsios, X. Tricoche, and M. de Hoop, 2023, Out-of-

distribution risk bounds for neural operators with application to the Helmholtz wave equation: arXiv 

preprint, doi:https://doi.org/10.48550/arXiv.2301.11509. 

Li, Z., N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar, 2021, 

Fourier neural operator for parametric partial differential operators: arXiv preprint, 

doi:https://doi.org/10.48550/arXiv.2010.08895. 

Mohamed, I., H. Z. El-Mowafy, and M. Ibrahim, 2023, The use of machine learning toward an accurate 

initial model for seismic inversion: The Leading Edge, 42, 670-675. 

Park, M. J., J. Jennings, B. Clapp, and B. Biondi, 2022, Realistic synthetic data generation using neural 

style transfer: Application to automatic fault interpretation: Second International Meeting for Applied 

Geoscience & Energy, SEG, Expanded Abstracts, 1714–1718. 

Shibayama, T., N. Mizuno, H. Kusano, A. Kinoshita, M. Minegishi, R. Sakamoto, K. Hasegawa, and 

F. Kachi, 2021, Practical deep learning inversion using neural architecture search and a flexible training 

dataset generator: 82nd Annual International Conference and Exhibition, EAGE, Extended Abstracts. 

Wang, H., J. Lin, X. Dong, S. Lu, Y. Li, and B. Yang, 2023, Seismic velocity inversion transformer, 

Geophysics, 88(4), R513-R533.  

Yang, Y., A. F. Gao, J. C. Castellanos, Z. A. Ross, K. Azizzadenesheli, and R.W. Clayton, 2021, 

Seismic wave propagation and inversion with neural operators: The Seismic Record,1, 126–134. 


